





# SINGLE AND LARGE GRAIN ACTIVITIES AT FERMI

Single Crystal Niobium Technology Workshop Araxia, Brazil Claire Antoine + Fermi teams... 10/31/2006



### Layout

Large grain / Monocrystal Cavities development

- Fabrication process
- 1cell program





- Recrystallization study
- Cold and room temperature properties
- Magnetic properties

Sample R&D to understand SRF issues

- Grain boundaries and roughness
- GB and field enhancement
- GB and weak superconductivity

Collaboration with MSU

Collaboration with FSU



:lr

İİĹ

# FNAL monocrystal Nb program

- Interest :
  - Fewer fabrication steps => starting material should be less expansive
  - No/few recrystallization @ welding => BCP instead of EP
  - Possibility to choose the proper orientation for :
    - ✤ Formability ? e.g. (111) = more favorable for small grain textures
    - Oxygen diffusion ? (111) = close packed/ (001) = loose packed
    - Oxide thickness ? (idem)
    - + Surface  $B_C ? (B_{C3})$
    - Recrystallization @ welding...





**华** 

# Monocrystal Nb program...

### 2 complementary goals :

Developing local expertise on the fabrication process :

- ~ 10-15 1-cell cavities project
- 3.9 GHz :
  - Easier to get 1! -grain material
  - Sufficient to determine the fabrication steps
  - Can be used to test EP, and other behaviors
  - ✤ High R<sub>BCS</sub> losses => limited RF testing ?
- Then 1.3 GHz
  - RF testing once the fabrication process is mastered
- R&D program on sample:
  - Sensitivity of the crystalline orientation to :
    - ✤ EP vs BCP
    - Baking/Oxygen diffusion
    - Hydrogen loading
    - ÷ ...
  - Bi-crystal studies... [ see P. Lee talk]





### Tensile test from 4 K – 300 K

Minor investment and time required



QA: Systematic testing of Nb batches : RT and Cold mechanical properties => data for modeling (forming, mechanical resistance, RF behavior...)



İİL

### Recrystallization study







### Possible developments (mid term)

- Hydrogen, oxygen embrittlement at low temperature
  - Effect of welding
  - Grain boundary strength,
- Crystal orientation/texture effects





# Monocrystal Nb program...

#### AC susceptibility, magnetization measurement

- 1<sup>rst</sup> step: buy a commercial magnetometer for B<sub>C3</sub> measurement/ or collabn
- It is the only technique sensitive enough to baking/surface processing !





What is the problem with GB?

Morphological effect or depleted SC ?

Flux penetration @ GB

**华** 













[Sung Hawn]



Saturation-field H0 gives information on de-pairing  $J_d$  of SC GB



# Single crystal with artificial defect (notch ) on the surface





ΪĹ





#52 ZFC H=40 mT T=7K



#62 Remn H=80 mT T=7K

[A. Polyanskii et al, WU/FSU]

**H**  $\perp$  surface: notch has small impact on flux distribution even at higher T



# Single crystal with notch on the surface : H // surface



MO contrast is double at the groove, when in-plane field perpendicular to groove

No MO contrast at the groove, when in-plane field parallel to groove

# Morphological effect ... Roughness



# Working hypothesis: morphology => quench

Steps perpendicular to H produce field enhancement

It triggers quench

This phenomena is different from the hot spots observed when  $\exists Q$ drop











**Claire Antoine** 

CEA/Saclay - Fermilab



# Influence of GB on roughness

#### **Roughness depends on grain** $\emptyset$



Claire Antoine CEA/Saclay - Fermilab



# Roughness depends on observation scale

## On Silicon (monoXstal)

[J. Amrit et al, Orsay]





CEA/Saclay - Fermilab



## « conformal equivalent structure » concept





IIL



1. Decomposition of a sampled surface into elementary segments mode) or elementary micro-triangles (3D mode).









# On Nb samples





# Grain boundaries and roughness





| Scanned surface | Step<br>size | Average<br>grain #   | Process | Ra   | С               | β      |
|-----------------|--------------|----------------------|---------|------|-----------------|--------|
| 1 mm²           | 1 µm         | 1 <sup>a)</sup>      | EP      | 0.69 | 9.3             |        |
|                 |              |                      | BCP     | 2.9  | 12.1            |        |
|                 |              | ~15 <sup>b)</sup>    | EP      | 0.8  | 13              |        |
|                 |              |                      | BCP     | 2.2  | 49              |        |
| 85 mm²          | 9 µm         | 8-9 <sup>a)</sup>    | EP      | 0.8  | 63.2            | 1.0135 |
|                 |              |                      | BCP     | 5    | <mark>98</mark> | 1.0283 |
|                 |              | ~ 1250 <sup>b)</sup> | EP      | 4.33 | 78.5            | 1.0182 |
|                 |              |                      | BCP     | 1.9  | 313             | 1.0651 |

a) Annealed material with grain  $\varnothing \sim 1-2 \text{ mm}$ 

b) Small grain material with  $\varnothing$  ~ 70  $\mu$ m

| Parameter                 | out of welding seam | on welding seam |
|---------------------------|---------------------|-----------------|
| $R_{a}\left(\mu m\right)$ | 6.1±1.8             | 60.6±23.4       |
| c (µm)                    | 96.5±3.6            | 354.3±7.2       |



# **Conclusion/ Proposal**

Hypothesis:



GB are harmful only because of BCP differential etching rate with orientation



**The field enhancement factor**  $\uparrow$  with  $\uparrow Ø$  of grains

Then



- Only GB to <sup>⊥</sup> H are dangerous
- Cavities with a GB // to the welding seem should be OK
  - Less fabrication steps
  - Delicate crystallographic alignment of the 2 half cells would not be necessary
  - Let's discuss that at the next coffee break !



